

Multivariate statistics in R

Hannes PETER Martin BOUTROUX

discussion points

- Evaluation?
- Group work?
- Script presentation?
- Questions for last week?

recap - session 1

- Multivariate data
- Use R
- Data exploration
 - Data import, data processing
 - Summary/descriptive statistics
 - Visualizations
 - histograms
 - heatmaps

Paper discussion

Annu. Rev. Ecol. Syst. 1990. 21:129-66 Copyright © 1990 by Annual Reviews Inc. All rights reserved

MULTIVARIATE ANALYSIS IN ECOLOGY AND SYSTEMATICS: PANACEA OR PANDORA'S BOX?

Frances C. James

Department of Biological Science, Florida State University, Tallahassee, Florida 32306

Charles E. McCulloch

Biometrics Unit, Cornell University, Ithaca, New York 14853

KEY WORDS: multivariate analysis, data analysis, statistical methods

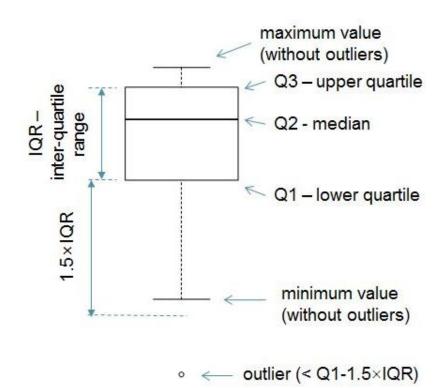
Transformation

Association metrics

Data exploration

- Use descriptive statistics (range, median, etc,...) to explore data
- Visualize raw data (histograms, boxplots)
- Check for outliers

- □ NA != 0
- Transformation?



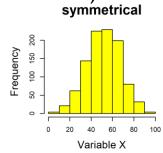
Transformation

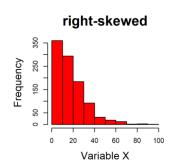
Mathematical operations applied to the data to change (relative) differences and distributions.

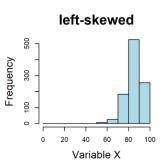
- => make descriptors comparable (e.g. pH, temperature, elevation,...)
- => statistical tests can be sensitive to distribution (of residuals) (e.g. normal distribution) and variance (homoscedasticity).
- => linear relationships are easier to interpret than non-linear ones
- => emphasize the importance of rare (low-abundance) taxa

Transformation

- semi-quantitative to quantitative descriptors
 - ex.: dominance, ranks into coverage
- quantitative to binary descriptors
 - ex.: species abundance into presence-absence
- quantitative to qualitative or semi-quantitative descriptors
 - ex.: transformation into classes
- improve descriptor distribution
 - linear transformations
 - adding a constant
 - non-linear transformations
 - square root (slightly right skewed data)
 - logarithm (right skewed data)
 - power (left-skewed data)
 - arcsine (proportions)







Example:

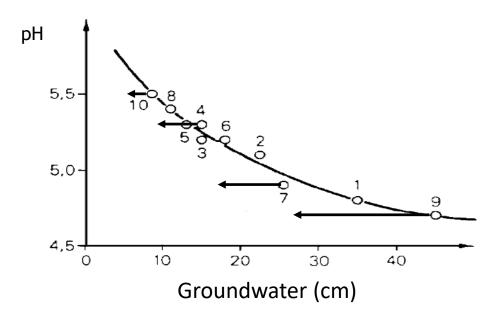
Transformations of Braun-Blanquet codes of vegetation cover

des	Central values of classes, in % of		Quantitative transformations based on ranks $y = rank^w$					
undance/ minance	cover	Ranks	w=0	w=0.25	w=0.5	w = 1	w=2	w = 4
absent	0.0	0	0.0	0.00	0.00	0	0	0
rare	()	1	1.0	1.00	1.00	1	1	1
+	0.1	2	1.0	1.19	1.41	2	4	16
1	5.0	3	1.0	1.32	1.73	3	9	81
2 m		4	1.0	1.41	2.00	4	16	256
2 2a	17.5	5	1.0	1.50	2.24	5	25	625
2b		6	1.0	1.57	2.45	6	36	1296
3	37.5	7	1.0	1.63	2.65	7	49	2401
4	62.5	8	1.0	1.68	2.83	8	64	4096
5	87.5	9	1.0	1.73	3.00	9	81	6561

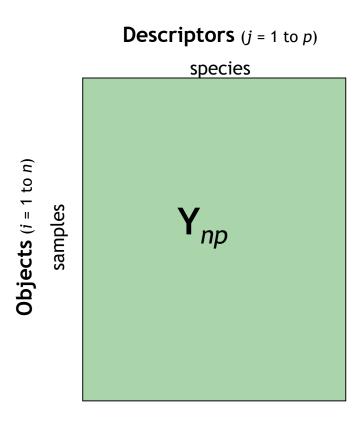
Example: Data transformation to improve linearity

log-transformation of groundwater depth allows to pass from a curvilinear relation (left) to a linear relation (right) of this variable with pH

	Ste	1	2	3	4	5	6	7	8	9	10
На		4.8	5.1	5.2	5.3	5.3	5.2	4.9	5.4	4.7	5.5
Gro	undwater	35	22	15	15	13	18	26	11	45	9
Gro	undwater, log	1.54	1.34	1.18	1.18	1.11	1.26	1.41	1.04	1.65	0.95



Standardization of descriptors or objects



Standardization of descriptors (species)

- Scaling of values between 0 and 1 or between -1 and 1 (ranging)
- Centering and reduction (standardization, z-scores)
 - Mean= 0
 - Standard deviation = 1
- Transformation into relative values (proportions per descriptor, species profiles)
 - Total per descriptor = 1
 - Species' profile: differences of abundance between species of the same community are not preserved
 - Good choice when the focus is on species and comparing their ecological niche

$$y'_i = \frac{y_i}{y_{\text{max}}}$$
 $y'_i = \frac{y_i - y_{\text{min}}}{y_{\text{max}} - y_{\text{min}}}$

$$z_i = \frac{y_i - \overline{y}}{s_v}$$

$$y'_{ij} = \frac{y_{ij}}{\sum_{i=1}^{n} y_{ij}} = \frac{y_{ij}}{y_{+j}}$$

Standardization of objects (samples)

- Transformation into relative values (proportions per object, site profiles)
 - Total per object = 1
 - Site profile: differences of abundances of one species across various sites are not preserved
 - Often best choice when focus is on species assemblages in biomonitoring (single sites, no cross-site comparison)

Hellinger transformation

Recommended in case of many absences in a species matrix

- Every value is divided by the norm (length) of the object vector
- The norm of every object vector is adjusted to 1

$$y'_{ij} = \frac{y_{ij}}{\sum_{i=1}^{p} y_{ij}} = \frac{y_{ij}}{y_{i+1}}$$

$$y'_{ij} = \sqrt{\frac{y_{ij}}{y_{i+}}}$$

$$y'_{ij} = \frac{y_{ij}}{\sqrt{\sum_{j=1}^{p} y_{ij}^2}}$$

Hellinger transformation

		Species			
Samples	sp 1	sp 2	sp 3	Σ	
sample 1	y ₁₁ = 0	y ₁₂ = 1	y ₁₃ = 1	y ₁₊ = 2	$y'_{ij} = \sqrt{\frac{y_{ij}}{y_{i+}}}$
sample 2	y ₂₁ = 1	y ₂₂ = 0	y ₂₃ = 0	y ₂₊ = 1	y_{i+}
sample 3	y ₃₁ = 0	y ₃₂ = 4	$y_{33} = 8$	y ₃₊ =12	
	$\downarrow \frac{y_{ij}}{y_{i+}}$	_			

	Species				
Samples	sp 1	sp 2	sp 3		
sample 1	0	0.5	0.5		
sample 2	1	0	0		
sample 3	0	0.33	0.67		

The second was a	Species				
Samples	sp 1	sp 2	sp 3		
sample 1	0	0.707	0.707		
sample 2	1	0	0		
sample 3	0	0.577	0.816		

Removes differences in absolute abundances between samples and reduces the effect of species with high abundances.

➤ Euclidean distance of Hellinger-transformed species abundance (= Hellinger distance) is well suited for ordination.

Special case transformations

- Double standardization (joint standardization of objects and descriptors)
 - \Box Chi-square (X^2) transformation
 - Wisconsin-double transformation
 - The descriptors are first scaled between 0 and 1, then objects are transformed into site profiles

$$y'_{ij} = \frac{y_{ij}}{y_{i+}\sqrt{y_{+j}}}$$

$$y'_{ij} = \sqrt{y_{++}} \frac{y_{ij}}{y_{i+} \sqrt{y_{+j}}}$$

• **Centered log ratio** (clr) and associated transformations (robust clr, additive log ratio).

Microbiome Datasets Are Compositional: And This Is Not Optional

Gregory B. Gloor 1*, Jean M. Macklaim 1, Vera Pawlowsky-Glahn 2 and Juan J. Egozcue 3

¹ Department of Biochemistry, University of Western Ontario, London, ON, Canada, ² Departments of Computer Science, Applied Mathematics, and Statistics, Universitat de Girona, Girona, Spain, ³ Department of Applied Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain

It is good practice to check the result of transformation by producing a plot or computing summary statistics

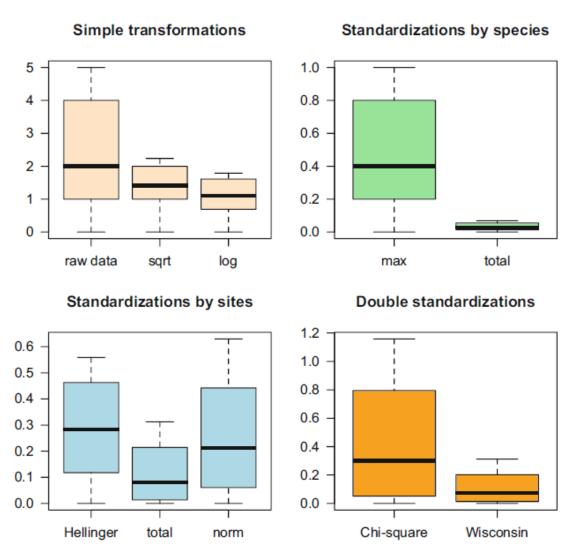
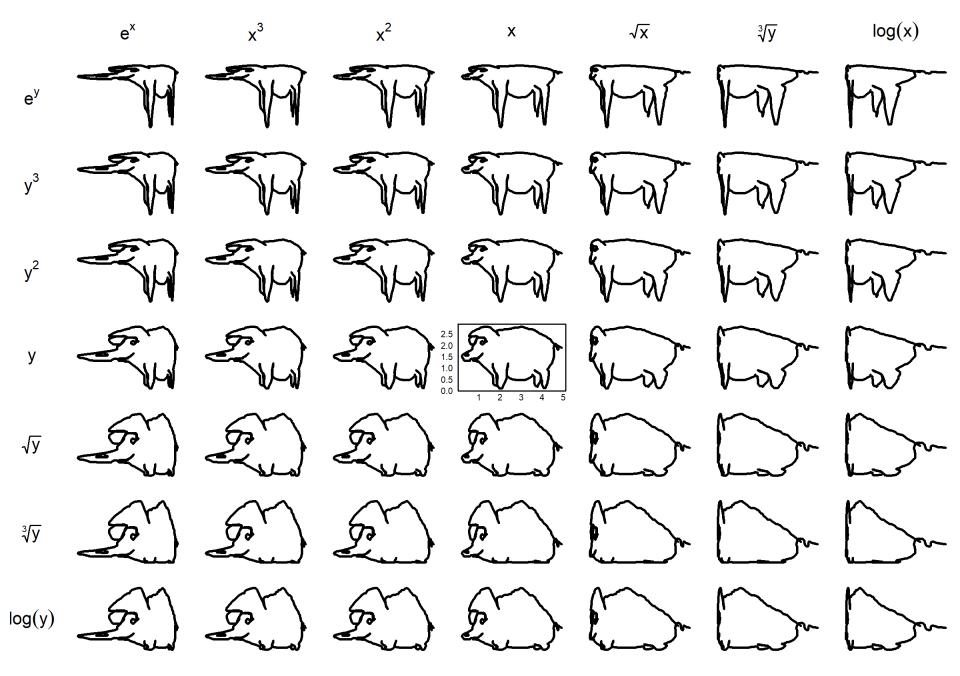


Fig. 2.6 Boxplots of transformed abundances of a common species, *Barbatula barbatula* (stone loach)



https://www.davidzeleny.net/

Association Measures

Similarity (distance) between objects

Interdependence (correlation) of descriptors

Origin and the consequences of the double zero problem

Association Measures

Most methods of multivariate analysis, in particular ordination and clustering techniques, are based on the comparison of all possible pairs of objects or descriptors.

=> Multivariate analyses are done on association matrices, the **choice** of an appropriate measure is crucial.

Choice depends on:

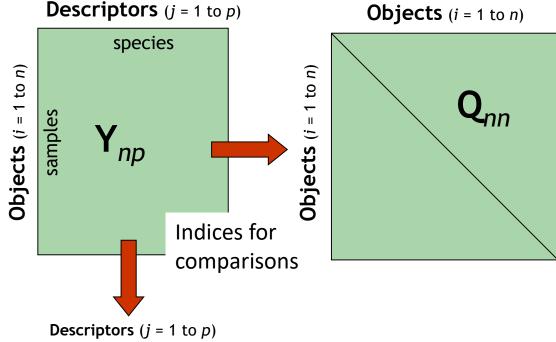
- research question
- type of comparison (objects or descriptors)
- type and mathematical property of variables (species or physicochemical, quantitative, qualitative,...)

Comparisons take the form of **association measures** (often called coefficients or indices), which are assembled in an **association matrix**.

Q- and R- mode

Association/resemblance matrix

Rectangular matrix of raw data (Y)

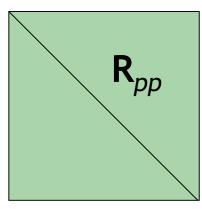


Q mode

comparison between pairs of samples

⇒ similarity/ dissimilarity

Descriptors (j = 1 to p)

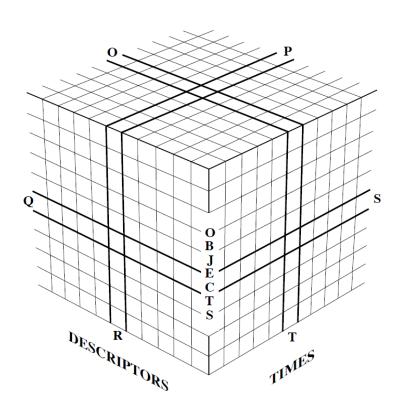


R mode

comparison between pairs of species

⇒ dependence

(correlation)



The three-dimensional data box (objects × descriptors × times). Adapted from Cattell (1966).

O: among time instances, based on all observed descriptors (a single object);

P: among descriptors, based on all observed times (a single object);

Q: among objects, based on all observed descriptors (a single instance);

R: among descriptors, based on all observed objects (a single instance);

S: among objects, based on all observed times (a single descriptor);

T: among time instances, based on all observed objects (a single descriptor).

Association measures (Q mode)

- Measure of similarity S(x₁,x₂)
 - between 0 and 1
 - 1 for two identical objects
- Measure of dissimilarity D(x₁,x₂)
 - between 0 and 1
 - 0 for two identical objects
- Measure of distance D(x₁,x₂)
 - No supremum (or > 1)
 - 0 for two identical objects
- Measures of similarity can be converted to dissimilarity and reciprocally

$$D = 1 - S$$

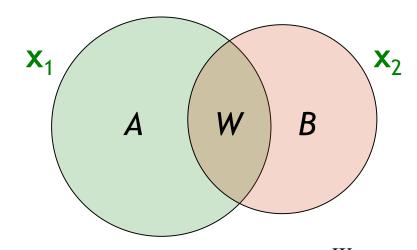
$$S = 1 - D$$

Similarity (Q mode)

Similarity indices for **binary descriptors** (presence-absence)

Venn notation

- W = number of species in common
- Different weights of shared/nonshared species



Jaccard
$$S_7^*(\mathbf{x}_1, \mathbf{x}_2) = \frac{W}{A + B - W}$$

Sørensen
$$S_8(\mathbf{x}_1, \mathbf{x}_2) = \frac{2W}{A+B}$$

Ochiai
$$S_{14}(\mathbf{x}_1, \mathbf{x}_2) = \frac{W}{\sqrt{AB}}$$

Kulczyński
$$S_{18}(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{2} \left(\frac{W}{A} + \frac{W}{B} \right)$$

Similarity (Q mode)

Notation by contingency table

d = « double zeros »

Species in x₂
present absent

a b

c d

Similarity

Dissimilarity (1 - S)

Jaccard

$$S_7(\mathbf{x}_1, \mathbf{x}_2) = \frac{a}{a+b+c} \qquad D(\mathbf{x}_1, \mathbf{x}_2) = \frac{b+c}{a+b+c}$$

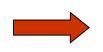
$$S_8(\mathbf{x}_1, \mathbf{x}_2) = \frac{2a}{2a+b+c}$$
 $D_{13}(\mathbf{x}_1, \mathbf{x}_2) = \frac{b+c}{2a+b+c}$

Example

	Survey x1	Survey x2	٧
Species 1	1	1	а
Species 2	0	0	d
Species 3	0	0	d
Species 4	1	1	а
Species 5	1	0	b
Species 6	1	0	b
Species 7	0	1	С
Species 8	1	1	а
Total	5	4	

Venn notation

Α	5 species in survey 1
В	4 species in survey 2
W	3 species in common



contingency table

laccard

	3	species	found	in	both	surveys
--	---	---------	-------	----	------	---------

- 2 species found only in survey 1
- 1 species found only in survey 2
 - 2 species missing in both surveys

Similarity Index

Jaccard	
$S_7(\mathbf{x}_1, \mathbf{x}_2) =$	<u>a</u>
~ / (11,112)	a+b+c

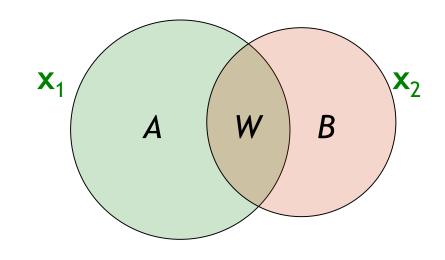
3+2+1

Jaccard	0.500
Sørensen	0.667
Ochiai	0.671
Kulczyński	0.675
Sokal-Michener	0.625

Similarity (Q mode)

Quantitative or semiquantitative descriptors (abundance, dominance, frequency, etc.)

 W is assessed differently: sum of the smallest values of abundance of shared species



Similarity

Dissimilarity (1 - S)

Jaccard

$$S(\mathbf{x}_1, \mathbf{x}_2) = \frac{W}{A+B-W}$$

$$D(\mathbf{x}_1, \mathbf{x}_2) = \frac{A+B-2W}{A+B-W}$$

$$\text{Van der Maarel}$$

$$\text{Ruzicka}$$

$$S_{17}(\mathbf{x}_1, \mathbf{x}_2) = \frac{2W}{A+B}$$

$$D_{14}(\mathbf{x}_1, \mathbf{x}_2) = \frac{A+B-2W}{A+B}$$

$$\text{Steinhaus}$$

$$\text{Bray-Curtis*}$$

Example

Species abundance:

	Survey x1	Survey x2	shared (min)
Species 1	10	5	5
Species 2	0	0	0
Species 3	0	0	0
Species 4	60	10	10
Species 5	5	0	0
Species 6	5	0	0
Species 7	0	10	0
Species 8	10	5	5
Sum	90	30	20

$$\frac{90 + 30 - 2 \times 20}{90 + 30} = 0.66$$

$$D_{14}(\mathbf{x}_1, \mathbf{x}_2) = \frac{A + B - 2W}{A + B}$$
 Bray-Curtis dissimilarity

90 Sum of species of survey 1

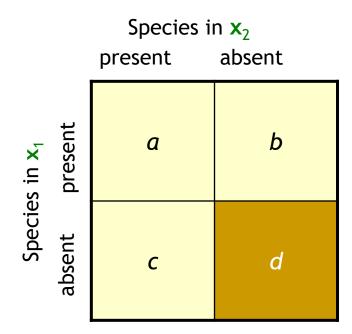
30 Sum of species of survey 2

20 Sum of species in common (minima)

double zero problem

The absence of species should not contribute to similarity between samples.

- Symmetrical indices allow for double zeros and therefore should be avoided when comparing lists of species, but are OK if the zero has an unambiguous meaning (ex. 0 mg/L O_2)
 - Ex. index of simple concordance (Sokal-Michener)
- Aymmetrical indices (Jaccard, Sørensen, ...) should be used for species presence/absence or abundance



Sokal-Michener

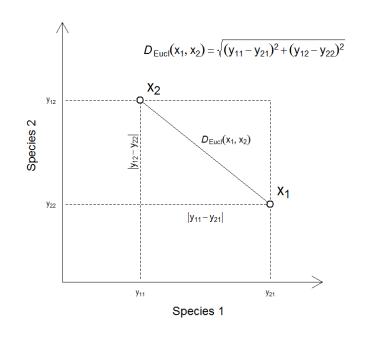
$$S_1(\mathbf{x}_1, \mathbf{x}_2) = \frac{a+d}{p} \qquad p = a+b+c+d$$

$$S_1(\mathbf{x}_1, \mathbf{x}_2) = \frac{a+d}{p} \qquad p = a+b+c+d$$

$$D(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{1 - S_1(\mathbf{x}_1, \mathbf{x}_2)} = \sqrt{\frac{b+c}{p}}$$

double zero problem

	Species 1	Species 2	Species 3
Sample 1	0	1	1
Sample 2	1	0	0
Sample 3	0	4	8



$$D_{Eucl} \ \left(Sample \ 1 \ , Sample \ 2 \ \right) \ = \ \sqrt{ \left(0 - 1 \ \right)^2 + \left(1 - 0 \ \right)^2 + \left(1 - 0 \ \right)^2 } \ = \ 1.732$$

$$D_{Eucl} \ \left(Sample \ 1 \ , Sample \ 3 \ \right) \ = \ \sqrt{ \left(0 - 0 \ \right)^2 + \left(1 - 4 \ \right)^2 + \left(1 - 8 \ \right)^2 } \ = \ 7.615$$

Coefficients which skip double zeros are called *asymmetrical* because they treat double absences in a different way than double presences.

Distance between objects (Q mode)

Euclidean distance

- used in Principal Component Analysis (PCA)
- No upper limit
- Increases with the number of descriptors

Chord distance

- Equivalent to the Euclidean distance of normed vectors of objects
- Bound between 0 and 2^{0.5}
- Does not increase with the number of descriptors

Manhattan Distance

- No upper limit
- Depends on the scale of variables
- Calculated preferably after standardization of descriptors

Example

Square root of the sum of squares of the values

	y ₁	y ₂	y ₃	y ₄	y ₅	Norm	4	45/49.5 Object vectors normed				
X ₁	45	10	15	0	10	49.5		y ₁	y ₂	y ₃	y ₄	y ₅
\mathbf{x}_2	25	8	10	0	3	28.2	X.	0.909	0.202	0.303	0.000	0.202
\mathbf{x}_3	7	15	20	14	12	31.8	X	0.885	0.283	0.354	0.000	0.106
3				• •	· -]		X	0.220	0.471	0.628	0.440	0.377

Euclidean distance

$$D_1(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{(45 - 25)^2 + ... + (0 - 0)^2 + (10 - 3)^2} = 21.9$$

Chord distance

$$D_3(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{(0.909 - 0.885)^2 + ... + (0 - 0)^2 + (0.202 - 0.106)^2} = 0.138$$

Manhattan distance

$$D_7(\mathbf{x}_1, \mathbf{x}_2) = |45 - 25| + ... + |0 - 0| + |10 - 3| = 34$$

Distance between objects (Q mode)

• X² Distance

- Euclidean distance of X² transformed data
 (divide by row sums and square root of column sums, and adjust for square root of matrix total)
- Used in correspondence analysis (CA)
- No upper limit

$$D_{16}(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{\sum_{j=1}^{p} \frac{y_{++}}{y_{+j}} \left(\frac{y_{1j}}{y_{1+}} - \frac{y_{2j}}{y_{2+}} \right)^{\frac{2}{3}}}$$

Hellinger Distance

- Variant of the X² metric
- Euclidean distance on Hellinger transformed data (square root of value divided by total)
- Better than the preceding ones for linear ordination (analysis by principal coordinates)
- No upper limit

$$D_{17}(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{\sum_{j=1}^{p} \left(\sqrt{\frac{y_{1j}}{y_{1+}}} - \sqrt{\frac{y_{2j}}{y_{2+}}} \right)^{\frac{2}{3}}} \dot{\mathbf{y}}_{2+}$$

Special-case distance metrics

Gower's distance

 combinations of logical, numerical, categorical or text data

Raup-Crick

probabilistic index based on presence/absence data. It is defined as 1 - prob(j), or based on the probability of observing at least j shared species in compared communities.

Measures of dependence between descriptors (R mode)

main purpose of R-mode analysis is to investigate relationships among descriptors

R mode dependence matrices may also be used, in some cases, as the computational basis for the ordination of *objects*, e.g. in principal component or linear discriminant analyses

Measures of dependence between descriptors (R mode) (parametric)

Covariance

- Measuring the joint dispersion of two variables around their means
- No lower bound or supremum

$$cov(\mathbf{y}_{1}, \mathbf{y}_{2}) = \frac{\sum_{i=1}^{n} (y_{i1} - \overline{y}_{1})(y_{i2} - \overline{y}_{2})}{n-1}$$

Pearson Correlation r

between -1 and 1

$$r(\mathbf{y}_1, \mathbf{y}_2) = \frac{\sum_{i=1}^{n} (y_{i1} - \overline{y}_1)(y_{i2} - \overline{y}_2)}{\sqrt{\sum_{i=1}^{n} (y_{i1} - \overline{y}_1)^2 \sum_{i=1}^{n} (y_{i2} - \overline{y}_2)^2}}$$

Dependence measures are non-metric because they can show negative values.

They are testable (p-value, check assumptions).

Parametric dependence only for linear relationships!

Measures of dependence between descriptors (R mode) (non-parametric)

Spearman rank correlation (rho)

between -1 and 1

$$\rho(\mathbf{y}_1, \mathbf{y}_2) = 1 - \frac{6\sum_{i=1}^{n} (y_{i1} - y_{i2})^2}{n^3 - n}$$

Kendall rank correlation (tau)

- between -1 and 1
- S= sum of concordances (-1 or +1)
 between ranks of paired descriptors

$$\tau(\mathbf{y}_1, \mathbf{y}_2) = \frac{2S}{n(n-1)}$$

n = total number of objects

